Prelab - Experiment VI
Counters, Displays and Drivers
Prepared for: Ms. Bayan Nimer
Teaching Assistant: Mus'ab B’airat
Student Name: Baibers Qasem
Student Number: 1082092

1. Create the truth table describing the function of a BCD to seven-segment decoder.

The lower case letters, a-g, represent the segments on the display while the upper case letters A-D represent the BCD input. Observe that A is the lest-significant bit of the BCD input. The seven output of the decoder (a, b, c, d, e, f, g):

Num.	Inputs				
	D	C	B	A	
0	0	0	0	0	
1	0	0	0	1	
2	0	0	1	0	
3	0	0	1	1	
4	0	1	0	0	
5	0	1	0	1	
6	0	1	1	0	
7	0	1	1	1	
8	1	0	0	0	
9	1	0	0	1	

Outputs							
a	b	c	d	E	F	g	
1	1	1	1	1	1	0	
0	1	1	0	0	0	0	
1	1	0	1	1	0	1	
1	1	1	1	0	0	1	
0	1	1	0	0	1	1	
1	0	1	1	0	1	1	
1	0	1	1	1	1	1	
1	1	1	0	0	0	0	
1	1	1	1	1	1	1	
1	1	1	0	0	1	1	

2. Make K-maps for each of the seven outputs. Reduce the K-maps to obtain a minimal sum of products expression for each segment.

$a=D+B+C A+C^{\prime} A^{\prime}$
$\mathrm{b}=\mathrm{C}^{\prime}+\mathrm{BA}+\mathrm{B}^{\prime} \mathrm{A}^{\prime}$
c $=B^{\prime}+A+C$
$\mathrm{e}=\mathrm{C}^{\prime} \mathrm{A}^{\prime}+\mathrm{BA}^{\prime}$
$\mathrm{f}=\mathrm{D}+\mathrm{B}^{\prime} \mathrm{A}^{\prime}+\mathrm{CA}^{\prime}+\mathrm{CB}{ }^{\prime}$
$\mathrm{g}=\mathrm{D}+\mathrm{C}^{\prime} \mathrm{B}+\mathrm{CA}^{\prime}+\mathrm{CB}{ }^{\prime}$

3. What is the appropriate display type (common anode/common cathode) that must be used with 7447 display decoder? Why?

I must use the cathode display type because the inputs of the display are logic high.
5. Why pin 12 must be connected to pin 1 ? What happen if we connect pin 1 to the clock and disconnect pin 12 ?

We connect pin 12 to pin 1 because this counter is a ripple counter, so the clock input (pin 1) must not be connected to the pulse directly it must be connected to pin 12:

Number	D	C	B	A
0	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	1	0	1
4	0	1	1	0
5	0	1	1	1
6	1	0	0	0
7	0	0	0	1
9	0	0	0	0

From this table we notice that B complements when A goes from 1 to 0 and D is 0 , so the clock input of B must be connected to $Q(A)$ (pin12). If we connect pin 1 to the clock directly, $Q(B)$ will complement every pulse and the sequence will be strange like the following :

